# Lesson 5 - Hashing Techniques

## Bucket Hashing

Closed hashing stores all records directly in the hash table. Each record R with key value kR has a home position that is h(kR), the slot computed by the hash function. If R is to be inserted and another record already occupies R's home position, then R will be stored at some other slot in the table. It is the business of the collision resolution policy to determine which slot that will be. Naturally, the same policy must be followed during search as during insertion, so that any record not found in its home position can be recovered by repeating the collision resolution process.

One implementation for closed hashing groups hash table slots into buckets. The M slots of the hash table are divided into B buckets, with each bucket consisting of M/B slots. The hash function assigns each record to the first slot within one of the buckets. If this slot is already occupied, then the bucket slots are searched sequentially until an open slot is found. If a bucket is entirely full, then the record is stored in an overflow bucket of infinite capacity at the end of the table. All buckets share the same overflow bucket. A good implementation will use a hash function that distributes the records evenly among the buckets so that as few records as possible go into the overflow bucket.

When searching for a record, the first step is to hash the key to determine which bucket should contain the record. The records in this bucket are then searched. If the desired key value is not found and the bucket still has free slots, then the search is complete. If the bucket is full, then it is possible that the desired record is stored in the overflow bucket. In this case, the overflow bucket must be searched until the record is found or all records in the overflow bucket have been checked. If many records are in the overflow bucket, this will be an expensive process.

A simple variation on bucket hashing is to hash a key value to some slot in the hash table as though bucketing were not being used. If the home position is full, then the collision resolution process is to move down through the table toward the end of the bucket while searching for a free slot in which to store the record. If the bottom of the bucket is reached, then the collision resolution routine wraps around to the top of the bucket to continue the search for an open slot. For example, assume that buckets contain eight records, with the first bucket consisting of slots 0 through 7. If a record is hashed to slot 5, the collision resolution process will attempt to insert the record into the table in the order 5, 6, 7, 0, 1, 2, 3, and finally 4. If all slots in this bucket are full, then the record is assigned to the overflow bucket. The advantage of this approach is that initial collisions are reduced, Because any slot can be a home position rather than just the first slot in the bucket.

Bucket methods are good for implementing hash tables stored on disk, because the bucket size can be set to the size of a disk block. Whenever search or insertion occurs, the entire bucket is read into memory. Because the entire bucket is then in memory, processing an insert or search operation requires only one disk access, unless the bucket is full. If the bucket is full, then the overflow bucket must be retrieved from disk as well. Naturally, overflow should be kept small to minimise unnecessary disk accesses.

## Cuckoo Hashing

Cuckoo hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table, with worst-case constant lookup time. The name derives from the behaviour of some species of cuckoo, where the cuckoo chick pushes the other eggs or young out of the nest when it hatches; analogously, inserting a new key into a cuckoo hashing table may push an older key to a different location in the table.

Cuckoo hashing is a form of open addressing in which each non-empty cell of a hash table contains a key or key–value pair. A hash function is used to determine the location for each key, and its presence in the table (or the value associated with it) can be found by examining that cell of the table. However, open addressing suffers from collisions, which happen when more than one key is mapped to the same cell. The basic idea of cuckoo hashing is to resolve collisions by using two hash functions instead of only one. This provides two possible locations in the hash table for each key. In one of the commonly used variants of the algorithm, the hash table is split into two smaller tables of equal size, and each hash function provides an index into one of these two tables. It is also possible for both hash functions to provide indexes into a single table.

Lookup requires inspection of just two locations in the hash table, which takes constant time in the worst case (see Big O notation). This is in contrast to many other hash table algorithms, which may not have a constant worst-case bound on the time to do a lookup. Deletions, also, may be performed by blanking the cell containing a key, in constant worst case time, more simply than some other schemes such as linear probing.

When a new key is inserted, and one of its two cells is empty, it may be placed in that cell. However, when both cells are already full, it will be necessary to move other keys to their second locations (or back to their first locations) to make room for the new key. A greedy algorithm is used: The new key is inserted in one of its two possible locations, "kicking out", that is, displacing, any key that might already reside in this location. This displaced key is then inserted in its alternative location, again kicking out any key that might reside there. The process continues in the same way until an empty position is found, completing the algorithm. However, it is possible for this insertion process to fail, by entering an infinite loop or by finding a very long chain (longer than a preset threshold that is logarithmic in the table size). In this case, the hash table is rebuilt in-place using new hash functions

In practice Cuckoo hashing is about 20-30% slower than linear probing which is the fastest of the common approaches. The reason is that cuckoo hashing often causes two cache misses per search, to check the two locations where a key might be stored, while linear probing usually causes only one cache miss per search. However, because of its worst case guarantees on search time, cuckoo hashing can still be valuable when real-time response rates are required.